Browse by Year

Identifying Factors Related to Severe Flooding Vulnerability, Preparedness, and Resiliency in Long Island and New York City

November 23, 2021
(*Please email us at for the information on membership to get access to the full article.)



Current estimates reveal that approximately 1.2 billion people reside in areas susceptible to flooding. However, due to human-inflicted changes to the environment, it is predicted that within the next 30 years, this number will increase by at least 400 million. Despite the prevailing belief that the effects of flooding are diminutive, catastrophic destruction is possible, especially when victims belong to vulnerable populations. Aside from physical damage, severe flooding often prevents individuals from securing the bare necessities- water, food, shelter, and medical attention- leading to health crises and social segregation. Following Hurricane Sandy, these adverse effects devastated communities on the East Coast, namely those in New York City and Long Island. To mitigate complications during recuperation, researchers proposed updating strategies and policies to take into account factors such as social capital and economic vulnerability. Doing so may ensure that all communities have equal access to ample resources and services, regardless of demographic composition. Therefore, this study investigated the role of community support, as opposed to socioeconomic status, in the vulnerability and resiliency of New York residents to flooding from Hurricane Sandy. Those who are more engaged in politics tend to be more vigilant about the efforts of their local government. If local politicians are unjustly favoring a certain demographic and neglecting the needs of others, people who pay attention to politics are able to identify the problem and understand how it can be rectified. Furthermore, people who pay attention to the workings of their government are more inclined to address social issues. For vulnerable families, this is relevant because an unsupportive, inept government is frequently the root of problems including forced evacuation/homelessness, poverty, inaccessible resources, etc. If political attentiveness could be quantified, policymakers and community organizations would be able to ascertain which populations are less educated about flooding preparation/reconstruction and which populations can assist the former.

Keywords: Flooding, social segregation, flooding preparation/reconstruction, Hurricane Sandy, devastated communities, in New York City and Long Island.


  1. Becker, J. S., Taylor, H. L., Doody, B. J., Wright, K. C., Gruntfest, E., & Webber, D. (2015). A Review of People's Behavior in and around Floodwater. Weather, Climate, and Society, 7(4), 321-332.
  2. Bukvic, A., Zhu, H., Lavoie, R., & Becker, A. (2018). The role of proximity to waterfront in residents' relocation decision-making post-Hurricane Sandy. Ocean & Coastal Management, 154.
  3. Campbell, K. A., Laurien, F., Czajkowski, J., Keating, A., Hochrainer-Stigler, S., & Montgomery, M. (2019). First insights from the Flood Resilience Measurement Tool: A large-scale community flood resilience analysis. International Journal of Disaster Risk Reduction, 40, 101257.
  4. Chakraborty, L., Rus, H., Henstra, D., Thistlethwaite, J., & Scott, D. (2020). A place-based socioeconomic status index: Measuring social vulnerability to flood hazards in the context of environmental justice. International Journal of Disaster Risk Reduction, 43, 101394.
  5. Clay, P. M., Colburn, L. L., & Seara, T. (2016). Social bonds and recovery: An analysis of Hurricane Sandy in the first year after landfall. Marine Policy, 74, 334-340.
  6. Deria, A., Ghannad, P., & Lee, Y.-C. (2020). Evaluating implications of flood vulnerability factors with respect to income levels for building long-term disaster resilience of low-income communities. International Journal of Disaster Risk Reduction, 48, 101608.
  7. Flores, A. B., Collins, T. W., Grineski, S. E., & Chakraborty, J. (2020). Social vulnerability to Hurricane Harvey: Unmet needs and adverse event experiences in Greater Houston, Texas. International Journal of Disaster Risk Reduction, 46.
  8. Fujimi, T., & Fujimura, K. (2020). Testing public interventions for flash flood evacuation through environmental and social cues: The merit of virtual reality experiments. International Journal of Disaster Risk Reduction, 50, 101690.
  9. Gibbens, S. (2019, February). Hurricane Sandy, explained. In National Geographic.
  10. Graham, L., Debucquoy, W., & Anguelovski, I. (2016). The influence of urban development dynamics on community resilience practice in New York City after Superstorm Sandy: Experiences from the Lower East Side and the Rockaways. Global Environment Change, 40.
  11. Hamilton, K., Demant, D., Peden, A. E., & Hagger, M. S. (2020). A systematic review of human behaviour in and around floodwater. International Journal of Disaster Risk Reduction, 47, 101561.
  12. Maantay, J., & Maroko, A. (2009). Mapping urban risk: Flood hazards, race, & environmental justice in New York. Applied Geography, 29(1).
  13. Martins, V. N., Nigg, J., Louis-Charles, H. M., & Kendra, J. M. (2019). Household preparedness in an imminent disaster threat scenario: The case of superstorm sandy in New York City. International Journal of Disaster Risk Reduction, 34, 316-325.
  14. McGuire, A. P., Gauthier, J. M., Anderson, L. M., Hollingsworth, D. W., Tracy, M., Galea, S., & Coffey, S. F. (2018). Social Support Moderates Effects of Natural Disaster Exposure on Depression and Posttraumatic Stress Disorder Symptoms: Effects for Displaced and Nondisplaced Residents. Journal of Traumatic Stress, 31(2), 223-233.
  15. Morss, R. E., Mulder, K. J., Lazo, J. K., & Demuth, J. L. (2016). How do people perceive, understand, and anticipate responding to flash flood risks and warnings? Results from a public survey in Boulder, Colorado, USA. Journal of Hydrology, 541, 649-664.
  16. Ntontis, E., Drury, J., Amlôt, R., Rubin, G. J., & Williams, R. (2020). Endurance or decline of emergent groups following a flood disaster: Implications for community resilience. International Journal of Disaster Risk Reduction, 45, 101493.
  17. Pourebrahim, N., Sultana, S., Edwards, J., Gochanour, A., & Mohanty, S. (2019). Understanding communication dynamics on Twitter during natural disasters: A case study of Hurricane Sandy. International Journal of Disaster Risk Reduction, 37.
  18. Rezende, O. M., Ribeiro da Cruz de Franco, A. B., Beleño de Oliveira, A. K., Miranda, F. M., Pitzer Jacob, A. C., Martins de Sousa, M., & Miguez, M. G. (2020). Mapping the flood risk to Socioeconomic Recovery Capacity through a multicriteria index. Journal of Cleaner Production, 255, 120251.
  19. Thistlethwaite, J., Henstra, D., Brown, C., & Scott, D. (2017). How Flood Experience and Risk Perception Influences Protective Actions and Behaviours among Canadian Homeowners. Environmental Management, 61(2), 197-208.
  20. Wang, Z., Lam, N. S.N., Obradovich, N., & Ye, X. (2019). Are vulnerable communities digitally left behind in social responses to natural disasters? An evidence from Hurricane Sandy with Twitter data. Applied Geography, 108, 1-8.