Archived Issues

We congratulate you on acceptance of your manuscript.

Browse by Year

Evaluation of Therapeutics to Target Stem Cell Like Prostate Cancer

August 21, 2024

Abstract:  Castration-resistant prostate cancer (CPRC) is the lethal stage of prostate cancer that persists after androgen deprivation therapy. There are four epigenetic subtypes of CRPC including stem cell-like (SCL) which is AR-low/independent and lacks therapeutic options. CRPC-SCL is driven by FOSL1, a transcription factor critical to the survival of this disease subtype. Here, I uncovered that ERK inhibition using small molecules leads to suppression of FOSL1 and decreased viability in CRPC-SCL models. These data suggest that targeting the MAPK-ERK signaling pathway serves as a potential therapeutic strategy for stem cell-like prostate cancer.


References

  1. Basbous, J., Chalbos, D., Hipskind, R., Jariel-Encontre, I., & Piechaczyk, M. (2007). Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. Molecular and Cellular Biology, 27(11), 3936–3950. https://doi.org/10.1128/MCB.01776-06 

  2. Casalino, L., Talotta, F., Matino, I., & Verde, P. (2023). FRA-1 as a Regulator of EMT and Metastasis in Breast Cancer. International Journal of Molecular Sciences, 24(9), 8307. https://doi.org/10.3390/ijms24098307 

  3. Caunt, C. J., Sale, M. J., Smith, P. D., & Cook, S. J. (2015). MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nature Reviews. Cancer, 15(10), 577–592. https://doi.org/10.1038/nrc4000 

  4. Chaikuad, A., Tacconi, E. M., Zimmer, J., Liang, Y., Gray, N. S., Tarsounas, M., & Knapp, S. (2014). A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nature Chemical Biology, 10(10), 853–860. https://doi.org/10.1038/nchembio.1629 

  5. Gao, D., Vela, I., Sboner, A., Iaquinta, P. J., Karthaus, W. R., Gopalan, A., Dowling, C., Wanjala, J. N., Undvall, E. A., Arora, V. K., Wongvipat, J., Kossai, M., Ramazanoglu, S., Barboza, L. P., Di, W., Cao, Z., Zhang, Q. F., Sirota, I., Ran, L., MacDonald, T. Y., … Chen, Y. (2014). Organoid cultures derived from patients with advanced prostate cancer. Cell, 159(1), 176–187. https://doi.org/10.1016/j.cell.2014.08.016 

  6. Morris, E. J., Jha, S., Restaino, C. R., Dayananth, P., Zhu, H., Cooper, A., Carr, D., Deng, Y., Jin, W., Black, S., Long, B., Liu, J., Dinunzio, E., Windsor, W., Zhang, R., Zhao, S., Angagaw, M. H., Pinheiro, E. M., Desai, J., Xiao, L., … Samatar, A. A. (2013). Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discovery, 3(7), 742–750. https://doi.org/10.1158/2159-8290.CD-13-0070 

  7. Seger, R., & Krebs, E. G. (1995). The MAPK signaling cascade. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 9(9), 726–735. 

  8. Tang, F., Xu, D., Wang, S., Wong, C. K., Martinez-Fundichely, A., Lee, C. J., Cohen, S., Park, J., Hill, C. E., Eng, K., Bareja, R., Han, T., Liu, E. M., Palladino, A., Di, W., Gao, D., Abida, W., Beg, S., Puca, L., Meneses, M., … Khurana, E. (2022). Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. Science (New York, N.Y.), 376(6596), eabe1505. https://doi.org/10.1126/science.abe1505 

  9. Talotta, F., Casalino, L., & Verde, P. (2020). The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications' door. Oncogene, 39(23), 4491–4506. https://doi.org/10.1038/s41388-020-1306-4 

  10. Watson, P. A., Arora, V. K., & Sawyers, C. L. (2015). Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nature Reviews. Cancer, 15(12), 701–711. https://doi.org/10.1038/nrc4016 

  11. Xiong, G., Ouyang, S., Xie, N., Xie, J., Wang, W., Yi, C., Zhang, M., Xu, X., Chen, D., & Wang, C. (2022). FOSL1 promotes tumor growth and invasion in ameloblastoma. Frontiers in Oncology, 12, 900108. https://doi.org/10.3389/fonc.2022.900108