Abstract: Castration-resistant prostate cancer (CPRC) is the lethal stage of prostate cancer that persists after androgen deprivation therapy. There are four epigenetic subtypes of CRPC including stem cell-like (SCL) which is AR-low/independent and lacks therapeutic options. CRPC-SCL is driven by FOSL1, a transcription factor critical to the survival of this disease subtype. Here, I uncovered that ERK inhibition using small molecules leads to suppression of FOSL1 and decreased viability in CRPC-SCL models. These data suggest that targeting the MAPK-ERK signaling pathway serves as a potential therapeutic strategy for stem cell-like prostate cancer.
References
Basbous, J., Chalbos, D., Hipskind, R., Jariel-Encontre, I., & Piechaczyk, M. (2007). Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. Molecular and Cellular Biology, 27(11), 3936–3950. https://doi.org/10.1128/MCB.01776-06
Casalino, L., Talotta, F., Matino, I., & Verde, P. (2023). FRA-1 as a Regulator of EMT and Metastasis in Breast Cancer. International Journal of Molecular Sciences, 24(9), 8307. https://doi.org/10.3390/ijms24098307
Caunt, C. J., Sale, M. J., Smith, P. D., & Cook, S. J. (2015). MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nature Reviews. Cancer, 15(10), 577–592. https://doi.org/10.1038/nrc4000
Chaikuad, A., Tacconi, E. M., Zimmer, J., Liang, Y., Gray, N. S., Tarsounas, M., & Knapp, S. (2014). A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nature Chemical Biology, 10(10), 853–860. https://doi.org/10.1038/nchembio.1629
Gao, D., Vela, I., Sboner, A., Iaquinta, P. J., Karthaus, W. R., Gopalan, A., Dowling, C., Wanjala, J. N., Undvall, E. A., Arora, V. K., Wongvipat, J., Kossai, M., Ramazanoglu, S., Barboza, L. P., Di, W., Cao, Z., Zhang, Q. F., Sirota, I., Ran, L., MacDonald, T. Y., … Chen, Y. (2014). Organoid cultures derived from patients with advanced prostate cancer. Cell, 159(1), 176–187. https://doi.org/10.1016/j.cell.2014.08.016
Morris, E. J., Jha, S., Restaino, C. R., Dayananth, P., Zhu, H., Cooper, A., Carr, D., Deng, Y., Jin, W., Black, S., Long, B., Liu, J., Dinunzio, E., Windsor, W., Zhang, R., Zhao, S., Angagaw, M. H., Pinheiro, E. M., Desai, J., Xiao, L., … Samatar, A. A. (2013). Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discovery, 3(7), 742–750. https://doi.org/10.1158/2159-8290.CD-13-0070
Seger, R., & Krebs, E. G. (1995). The MAPK signaling cascade. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 9(9), 726–735.
Tang, F., Xu, D., Wang, S., Wong, C. K., Martinez-Fundichely, A., Lee, C. J., Cohen, S., Park, J., Hill, C. E., Eng, K., Bareja, R., Han, T., Liu, E. M., Palladino, A., Di, W., Gao, D., Abida, W., Beg, S., Puca, L., Meneses, M., … Khurana, E. (2022). Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. Science (New York, N.Y.), 376(6596), eabe1505. https://doi.org/10.1126/science.abe1505
Talotta, F., Casalino, L., & Verde, P. (2020). The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications' door. Oncogene, 39(23), 4491–4506. https://doi.org/10.1038/s41388-020-1306-4
Watson, P. A., Arora, V. K., & Sawyers, C. L. (2015). Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nature Reviews. Cancer, 15(12), 701–711. https://doi.org/10.1038/nrc4016
Xiong, G., Ouyang, S., Xie, N., Xie, J., Wang, W., Yi, C., Zhang, M., Xu, X., Chen, D., & Wang, C. (2022). FOSL1 promotes tumor growth and invasion in ameloblastoma. Frontiers in Oncology, 12, 900108. https://doi.org/10.3389/fonc.2022.900108